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Chapter 1

Introduction.

One can learn classic informatics without learning how the computers are built. The knowlage of electro-
dynamics or electronics is normally not required. The hardware plays the role of abstraction layer and
simulates a simple framework of binary logic used in the theory and in the application programming. The
quantum information theory on the contrary uses rather contra-intuitive concept of quantum state and
measurement process. This makes learning the quantum informatics complicate: the fundamentals of the
quntum mechanics are requierd even for the basic concepts of the theory. The student is intentionally
exposed to the physics of the hardware or at least to the fundamental quantum concepts.

In this script we prefer to face this challange from very beginning and introduce the concepts of the
quantum mechanics and the requried mathematical tools first, before we start with the informatiin theory.
We avoid any discussion of physical motivation and of the historical perspective, which are domain of
physicists, and choose an axiomatic approach, which should deliver the formal framework and build the
ground for everything, what follows.
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Chapter 2

Axioms of the quantum mechanics.

Physics typically considers entity called ’physical system’ and tries to find a mathematical description,
which would allow to predict the evolution of the system in time. An observer can make experiments
(observations) and measure different physical properties (observables) of the system. Target of the theory
is to predict the result of such experiments. If the deterministic prediction is not possible, the probability
distribution of possible values would be the reduced target.

We start with axioms of the quantum theory. No attempt is made to explain why the axioms are so as
they are.

These notes are compiled from few classic sources listed in bibliography at the end of the script. The
books listed there cover the subject in much more details.

2.1 Mathematical notation

To formulate axioms we will need few mathematical concepts introduced in this section. Vector space V
over the number field K, called K-vector space, is a set of objects called ’vectors’ V = {|v〉} together with
two operations called addition and multiplication by a number:

+ : V × V → V (2.1)

∗ : K × V → V (2.2)

(2.3)

Note: we distinguish vector from numbers by putting them into strange brackets like this: |v〉. After Dirac
this notation is called KET from bra-cket.

Addition should be commutative, both operations should be associative and distributive low must hold:
α(|v〉+ |w〉) = α|v〉+α|w〉. Additionally the existence of the zero vector |0〉 with properties |v〉+ |0〉 = |v〉,
0|v〉 = |0〉 and α|0〉 = |0〉 for all vectors |v〉 ∈ V and all numbers α ∈ K is required.

In the quantum theory the field K is the field C of complex numbers and the state vector space is a
C-vector space. One can add the third operation called scalar product:

〈v|w〉 : V × V → K (2.4)

Note: we write co-vector (also called dual vector) into reverse bracket like this: 〈v|. After Dirac this
notation is called BRA from brac-ket.
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For the C-vector space the scalar product is typically requried to satisfy the following conditions for all
vectors v, v′ ∈ V ,w,w′ ∈W and α ∈ K:

〈v|v〉 = r ; r ∈ R, r ≥ 0 (2.5)

〈v|v〉 = 0 ⇔ v = |0〉 (2.6)

〈v|w〉 = 〈w|v〉∗ (2.7)

〈v + v′|w〉 = 〈v|w〉 + 〈v′|w〉 (2.8)

〈v|w + w′〉 = 〈v|w〉 + 〈v|w′〉 (2.9)

〈v|αw〉 = 〈α∗ v|w〉 = α〈v|w〉 (2.10)

|〈v|w〉|2 ≤ 〈v|v〉〈w|w〉 , (2.11)

where ∗ means complex conjugation. The scalar product of a vector with itself 〈v|v〉 is a square of the
’length’ of this vector. The (2.11) is called Schwarz inequality.

Vector space with such scalar product is called Hilbert space.

As next we consider a linear operator, that means mapping Ô : V → V with following properties of
linearity which hold for each number α and vectors |v〉 and |w〉:

Ô(α|v〉) = αÔ(|v〉) (2.12)

Ô(|v〉+ |w〉) = Ô(|v〉) + Ô(|w〉) (2.13)

We will simply write Ô|v〉 instead of Ô(|v〉). As with functions, we write Â = B̂ if Â|v〉 = B̂|v〉 holds for
all vectors |v〉.

For a given operator Ô it would be interesting to find a new operator Ô† with the property 〈v|Ôw〉 =
〈Ô†v|w〉 holding for all vectors |v〉 and |w〉. The operator Ô† is called adjoint to operator Ô. If Ô = Ô†

the operator Ô is called self-adjoint or Hermetian.

Vector |v〉 is called eigenvector of operator Ô and number λ is called eigenvalue of operator Ô corresponding
to eigenvector |v〉, if following holds:

Ô|v〉 = λ|v〉 . (2.14)

Note that eigenvector remains to be eigenvector (with the same eigenvalue) if multiplied by a number. An
Hermetian operator has two important properties: its eigenvalues are real numbers and one can select its
eigenvectors to be orthogonalnormal and to constitute basis of the vector space. Recall: the set of vectors
is called orthonormal if all of them have the length one and any two of them are orthogonal. In other
word: 〈vi|vj〉 = δij , where |vi〉 and |vj〉 are eigenvectors and δij is 1 if i = j and 0 otherwise.

2.2 Axiom 1: States of the physical system

How the physical system is represented in the theory?
Axiom 1: State of the physical system is mathematically described as a vector in the Hilbert vector space.

Explanation:

As described above, a vector space is a set of objects called vectors which can be multiplied with numbers
(real or complex) and added to each other. As an illustration, one can think about vectors as arrows
drawn on the paper: these can also be multiplied by numbers (typically real numbers) and one can add
two vectors. The calculation axioms of the vector space are well known from school and can be found in
every book or in internet. An important additional operation is the scalar product: two vectors can be
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multiplied to produce a complex number. Vector space with defined scalar product is called Hilbert space.
The scalar product of the vector with itself can be thought as a square of its ’length’.

The space which describes the physical system can be more complex as the usual two or three dimensional
vector space learned in the school. It can have infinitely many dimensions but the axioms and operations
remain the same.

It turns out that the length of vector do not play any role in the mathematical description of the physical
state. So we can agree to normalize state vectors to the unit length by multiplying them with appropriate
real number.

Note: the same physical system can be described with different vector spaces and the same state will then
be represented by different vectors. The situation is similar to the question which coordinate system one
should use: it depends on the physical system of interest and on the personal preferences.

2.3 Axiom 2: Observables

How the experiment is represented in the theory? What do ’experiment’, ’measure’ and ’observable’ mean?

Axiom 2: An observable is mathematically described by linear operator on the vector space of state
vectors.

Explanation: Observable is the physical property of interest. One can measure observable by conducting
an experiment in which physical system interacts with measure device and changes the state (display) of
the device. Examples of observables: velocity, position, temperature etc.

Linear operator on the vector space is a linear mapping which takes one vector as argument and produce a
new vector as output. The word ’linear’ means that the result is the same whether one applies the operator
to the sum of vectors or to each vector separately and adds the vector afterwards. Similarly the result is
the same whether one first multiplies the vector with a number and than applies the operator or the other
way around. You can think about rotation as a linear operator. Another example is multiplication with
a number.

Once the vector space used for description of the physical system is selected, each observables corresponds
to particular linear operator in this space.

2.4 Axiom 3: Possible results of observation

Which result can produce observation of the given observable?
Axiom 3: An observation result is always an eigenvalue of the operator, which corresponds to the observable
in the sense of Axiom 2.

Explanation: If the vector resulting from action of operator equals to the original vector multiplied with a
number, then the original vector is called eigenvector and the number is called eigenvalue (corresponding
to this eigenvector). For given operator the set of eigenvectors and corresponding eigenvalues is fixed. The
Axiom states that observation always results in value (for exmaple velocity value) which is eigenvalue of
the ’observation operator’ (for example a velocity operator).

As the observation values must be real numbers, the operators corresponding to the oservables must be
of such kind, that their eigenvalues are real. Fortunately there is in fact an important class of linear
operators which satisfy this condition. Such an operator O is called self-adjoint or Hermetian and has
a property that for any two vectors a and b the scalar product 〈a,Ob〉 is equal to 〈Oa, b〉. Even more:
the eigenvectors of selfajoint operators form a basis of the vector space and any vector can uniquely be
written as linear combination of these eigenvectors.
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2.5 Axiom 4: Probability of the observation results

How to predict the result of observation?
Axiom 4: Assume the system is the particular state |v〉 prior to observation. The probability of particular
observation result is equal to square module of the scalar product of the state vector |v〉 with the eigenvector
corresponding to the observation value of interest.

Explanation: Recall that the system is described by vector and that an observation on this system can
result only in eigenvalues of the corresponding operator. Each eigenvalue belongs to particular eigenvector.
The Axiom states that the probability to measure particular value is the square module of the (complex)
scalar product of the state vector and the corresponding eigenvector.

In other words: as the eigenvectors {|φn〉 : Â|φn〉 = λn |φn〉} of the observable operator Â form an
orthonormal basis of the vector space, one can uniquelly project any given state vector |φ〉 on to any
given eigenvector |φn〉. The square module of this projection pn = |〈φn|φ〉|2 is the probability to get a
measurement result equal to the eigenvalue λn of this eigenvector eigenvector |φn〉.

The expectation value 〈A〉Φ of the obervables A is the average of many hypothetical measurements per-
formed on the same state |Φ〉:

〈A〉Φ =
∑

n

pn λn =
∑

n

|〈φn|Φ〉|2λn =
∑

n

〈Φ|φn〉〈φn|AΦ〉 = 〈Φ|AΦ〉 (2.15)

This formula for the average value of an observable is valid, when the system is is particular state Φ,
which is in general a superposition of eigenstates of the observable. In many situations it is necessary to
generalize (2.15) for a system which state is not known exactly but is given as probability distribution.

Consider a set of possible states {Φn}, which do not need to be mutual exclusive (orthogonal) and let
the observable A be measured many times by selecting a random system from an ensemble composed of
systems distributed between these states so, that the state Φn has a probability pn. The probabilities
should sum up to one. The average result of the observation is then the weighted sum:

〈A〉 =
∑

m

pm 〈A〉Φm
=

∑

m

pm 〈Φm|AΦm〉 =
∑

m,n

pm 〈Φm|φn〉〈φn|AΦm〉

=
∑

m,n

∑

a,b

pm c∗ma〈φa|φn〉〈φn|Acmbφb〉 =
∑

m,n

pm an|cmn|2 , (2.16)

where we take |φb〉 to be the eigenvector of Â with the eigenvalue ab.

To simplify this we introduce the density operator ρ =
∑

m pm|Φm〉〈Φm| and write the matrix element
(ρA)ab as follows:

(ρA)ab = 〈φa|
∑

m

pmΦm〉〈Φm|A|φb〉 =
∑

m

pmcamc
∗
bm ab . (2.17)

Comparing this with (2.16) we conclude

〈A〉 = Tr(ρA) =
∑

m,n

an pm|cnm|2 . (2.18)

Note that (2.15) is a particular case of (2.18) when {Φn} = {Φ}.



6

The (2.18) also helps to see the practical difference between a superposition of the states and a statistical
mix of the states in an ensemble. Lets start with two orthonormal eigenvectors |+〉 and |−〉 of a hypo-
thetical observable A with the corresponding eigenvalues +1 and -1. We can build two new orthonormal
vectors out of them:

|0〉 = (|+〉 + |−〉) /
√
2 (2.19)

|1〉 = (|+〉 − |−〉) /
√
2.

Now consider a system in the state |+〉 which is a symmetric superposition of |0〉 and |1〉 with the
probability to find each of them equal to 1

2 . The expectation value of A for this state is by definition +1.
Compare this with the statistical ensable composed on both states |0〉 and |1〉 with the same probability
of 1

2 . The expectation value according to (2.18) is:

〈A〉 = Tr(ρA) =
∑

m,n

an pm|cnm|2 (2.20)

= (+1) ∗ 1

2
∗ | 1√

2
|2 + (−1) ∗ 1

2
∗ | 1√

2
|2 + (+1) ∗ 1

2
∗ | 1√

2
|2 + (−1) ∗ 1

2
∗ | − 1√

2
|2 = 0 .

The desity operator, thus, does correctly reflect the difference in these two configurations: in the first case
(using the based {|+〉, |−〉} the density matrix has only one non-zero element ρ11 = 1. In the second case
the density matrix is diagonal with ρij =

1
2δij .

2.6 State after observation.

Measurement is a process of interaction of the system with the measurement apparatus and with the
observer. Which state has a system after the measurement? Some text books refer to the complexity of
such interaction and invoce mysterious collapse of the state vector during the measurement, which results
in projection of the vector onto the eigen vector corresponding to the measured value.

This is equivalent to an additional axiom which states, that during the measure yielding result λn the state
vector |φ〉 collapses to |φn〉 multiplied by some not further known phase factor eiα. The nice consequence
of this would be that the measurement performed shortly after the first one would, according to the Axiom
4, certainly produce the same result λn.

There are at least two problems with this rule: first, it obviously does not apply to measurements which
change the measured property or even destroy the measured object, and second, if the quantum machanics
pretends to explain the world, it should also explain what happens during measurement, and not proclame
the resulting state as an axiom.

We will revisit this question in more details after discussing Schrodinger equation, which describes the
time evalution of the system. This evolution should be able to explain how the state vector evolves during
the process of measurement.



Chapter 3

Coordinates, Impuls, Energy

3.1 Coordinates

The axioms listed above are quite abstract. How to apply them to the particular physical system? We
shall start with a free particle which moves from the left to the right along the x-axis.

Question: which vector space should be used to describe the particle which can move only in one dimension
along the x-axis?

Answer: The space of complex valued function of coordinate x: {f(x) : R ⇒ C} with scalar product
defined as follows:

〈f |g〉 =
+∞
∫

−∞

f(x)∗g(x) dx . (3.1)

It is obviously a vector space (over the field of complex numbers) as one can add functions and multiply
with complex numbers.

We could spend more time discussing different possible choices for the state vector space of the single-
particle system and some of them could also work, but the choice described above is simple and effective.

Question: which operator should represent the x-coordinate observable?

Answer: the operator which simply multiply the vector with x variable: X̂ : X̂|f〉 = x|f〉 = x f(x). Note
that x f(x) is again a function of coordinate x and so a new valid state vector.

The eigenvectors with eigenvalue x0 are thus defined by equation x f(x) = x0 f(x) satisfied by Dirac’s
delta function δ(x− x0).

Consider a particle in the state |ξ〉 = ξ(x). The probability to find this particle at position x = x0
is, according to axioms, just the square module of projection on the eigenvector |ξx0

〉 = δ(x0) with the
eigenvalue x0:

P (x0) = |〈ξ|ξx0
〉|2 =

∣

∣

∣

∣

∣

∣

+∞
∫

−∞

ξ(x)∗δ(xo) dx

∣

∣

∣

∣

∣

∣

2

= |ξ(x0)|2 . (3.2)

The state vector function ξ(x) is called ’wave function’. The square module of the wave function evaluated
on position x0 is the probability to find the particle at this position.
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3.2 Impuls

The next fundamental physical observable is impulse.

It is well known from the classical mechanics that impulse conservation low is closely related to the
homogeneity of space i.e. the fact that physical lows are the same independent of where we put origin of
our coordinate systems. More generally: each symmetry results in conserved property and the conserved
property corresponding to the space translation symmetry is called ’impulse’.

Consider eigenvector |ξ0〉 of the x-coordinate which corresponds to the particular eigenvalue x = 0 and let
us assume that there is an operator Û(dx) which shifts the reference frame by to dx to the left. To say
this is the same as to say, that the X̂-eigenvector |ξ0〉 with the eigenvalue x = 0 will be transformed to
the vector |ξdx〉 with the eigenvalue x = dx:

Û(dx)|ξ0〉 = |ξdx〉 (3.3)

If the operator depends ’continuously’ on its argument, one can write Û(dx) = 1̂ + α P̂ dx, where P̂ is a
new operator called ’generator’ and α is a convenience coefficient which should be considered as part of
generator’s definition. In the quantum theory α is typically defined to be − i

~
. In analogy with the classic

theory the generator of spatial translation is an operator corresponding to impulse observable.

Note that symmetry operators are ’unitary’ operators characterized by the property Û † = Û becasue
we expect the scalar products (and thus experiment result probabilities) do not change under symmetry
transformations - in fact this can be taken as definition of the term ’symmetry’:

〈ψ|ξ〉 = 〈Ûψ|Ûξ〉 = 〈Û−1Ûψ|ξ〉 . (3.4)

As this must hold for all possible ξ and ψ the Û † = Û follows. As result the generators of the symmetry
are hermetian:

Û † = Û−1 = (1̂+ α P̂ dx)−1 = 1̂− α P̂ dx = 1̂+
i

~
P̂ dx . (3.5)

At the same time

Û † = 1̂† + α† P̂ † dx† = 1̂+
i

~
P̂ † dx , (3.6)

which yields P̂ † = P̂ . It follows

dx = dx〈ξdx|ξdx〉 = 〈ξdx|dx|ξdx〉 = 〈ξdx|X̂|ξdx〉 =
= 〈Û(dx)ξ0|X̂|Û(dx)ξ0〉 = 〈ξ0|Û−1(dx)X̂Û(dx)|ξ0〉 =
= 〈ξ0|(1̂− αdx P̂ )X̂(1̂+ αdx P̂ )|ξ0〉 = 〈ξ0|X̂|ξ0〉+ αdx 〈ξ0|[X̂, P̂ ]|ξ0〉 =
= αdx 〈ξ0|[X̂, P̂ ]|ξ0〉 , (3.7)

where the commutator [X̂, P̂ ] is defined as X̂P̂ − P̂ X̂ . As this should hold for all dx it follows that

[X̂, P̂ ] =
1

α
= i~ (3.8)

Given that the operator X̂ acts by multiplying state-vector (function) with x one can see from (3.8) that

P̂ = −i~ ∂

∂ x
(3.9)
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The eigenvector to the eigenvalue p is then the flat wave fp(x) = e−
i

~
px which satisfy the equation:

P̂ fp(x) = −i~∂fp(x)
∂ x

= p fp(x) (3.10)

For commutator [X̂, P̂ ] ≡ X̂P̂ − P̂ X̂ we get

[X̂, P̂ ] = ~ . (3.11)

3.3 Energy

Energy is related to the time translations exactly as impulse to the spatial translation.

We assume that there is an operator Û(dt) which translate the state vector from time t = 0 to t = dt,
where dt is an infinitisimal small period of time. Again we write Û(dt) = 1̂− i

~
dtÊ. If we want to translate

to the arbitrarily amount of time T we could split it into small amounts T/N and make them infinitesimal
by sending the natural number N to infinity. Now we must apply the operator Û(T/N) to the initial state
vector N times to move it to the time t = T .

This yields the movement equation

|ξ(T )〉 = lim
N→∞

ÛN (T/N)|ξ(0)〉 = lim
N→∞

(

1̂− iT

~N
Ê

)N

|ξ(0)〉 = e−
i T

~
Ê |ξ(0)〉 , (3.12)

where exponent is formally defined as power series. Differentiating this by T we obtain:

∂

∂T
|ξ(T )〉 = − i

~
Êe−

i T

~
Ê |ξ(0)〉 = − i

~
Ê|ξ(T )〉 (3.13)

or renaming for convenience T to t:

∂

∂t
|ξ(t)〉 = − i

~
Ê|ξ(t)〉 , (3.14)

which is the famous Schrodinger’s equation. It shows how the state evolves in time assuming the energy
operator is known. As long we do not care about concrete form of the energy operator we can use (3.14)
to formally introduce an energy operator:

Ê = i~
∂

∂ t
. (3.15)

For commutator [t̂, Ê] ≡ t̂Ê − Êt̂ we get

[t̂, Ê] = ~ . (3.16)

3.4 Uncertainty principle.

Let us define an uncertainity of the measurement of the observable A perfrmed on the system in state |Φ〉
as follows:

∆ΦA = 〈(A− 〈A〉Φ)2〉Φ (3.17)
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We follow [3] and express the product of uncertainities for two observables A and B through expectation
value of the commutator of their operators [Â, B̂] ≡ ÂB̂ − B̂Â. For this we use the following notation:

ΦA ≡ (Â− 〈A〉Φ)Φ/
√

〈Φ|Φ〉 (3.18)

∆ΦA =
√

〈ΦA|ΦA〉 . (3.19)

From Schwarz inequality (2.11) we follow for any two operators Â and B̂:

∆ΦA∆ΦB ≥ |〈ΦA|ΦB〉| . (3.20)

At the same time

〈ΦA|ΦB〉 =
〈Φ|[Â− 〈A〉Φ][B̂ − 〈B〉Φ]Φ〉

〈Φ|Φ〉 =
〈Φ|[ÂB̂ − 〈A〉Φ〈B〉Φ]Φ〉

〈Φ|Φ〉 . (3.21)

For hermetian operator we can write 〈Φ|ÂB̂Φ〉 = 〈Φ|B̂ÂΦ〉∗ and, thus,

Im〈ΦA|ΦB〉 =
〈Φ|[Â, B̂]Φ〉
2i〈Φ|Φ〉 = 〈[Â, B̂]〉Φ/2i (3.22)

or

∆ΦA∆ΦB ≥ 1

2
|〈[Â, B̂]〉Φ| . (3.23)

In particular for (3.11) and (3.16)we have the famous Heisenberg uncertainity relations:

∆ΦP ∆ΦX ≥ ~

2
(3.24)

and

∆ΦE∆Φt ≥
~

2
. (3.25)

3.5 Schrodinger’s equation for wave function

In mechanics the energy E consists of the kinetic part p2/2m and of the potential part which is just a
function of coordinate V (x):

E =
p2

2m
+ V (x) . (3.26)
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Before we can put this into (3.14) we must switch to operator notation. According to procedure known
as ’first quantization’, we replace the observables (impulse, coordinates etc.) with their operators. We
know already how to write both: the impulse operator (3.9) and the coordinate operator, which is just a
multiplication with this coordinate:

Ê =
P̂ 2

2m
+ V̂ (x)

i~
∂

∂t
= − ~

2

2m

∂2

∂x2
+ V (x) . (3.27)

This operator equation ultimately makes sense only once we apply it to vector state:

i~
∂

∂t
|ξ〉 =

[

− ~
2

2m

∂2

∂x2
+ V (x)

]

|ξ〉 . (3.28)

This is a differential equation for state vector |ξ(x, t)〉 = ξ(x, t) which is, according to our choice, just a
function of coordinate x. The operator on the right side is called Hamiltonian and denoted as Ĥ :

Ĥ = − ~
2

2m

∂2

∂x2
+ V (x) . (3.29)

As discussed above, for the particle in the state |ξ(x, t)〉 = ξ(x, t) the probability to find the particle in
the position x = x0 at time t = t0 equals to the square module of projection on the eigenvector δ(x0):

P (x0, t0) = |〈ξ(x, t0)|δ(x0)〉|2 =

∣

∣

∣

∣

∣

∣

+∞
∫

−∞

ξ(x, t0)
∗δ(xo) dx

∣

∣

∣

∣

∣

∣

2

= |ξ(x0, t0)|2 . (3.30)

The state vector function ξ(x, t) is called ’one-particle wave function’ and its evolution is governed by the
Schrodinger’s equation (3.28).

3.6 Historical considerations

Historically the motivation for the wave equation (3.28) was less axiomatic. Early in 20-th century Plank
in his work about radiation of the black body and Einstein (in his work about photo effect) have proposed
the following relationships between energy and impulse of the photon:

E = ~ω ,

p = ~k . (3.31)

In early 20-er years de Broglie postulated that all particles (not just photons) share these wave properties
with electromagnetic waves. Let us assume that the free particle can somehow be described by a plane
wave:

ξ(x, t) = eiα(kx−ωt) (3.32)
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In mechanics the relationship between energy and impulse of the particle is like (3.26). In particular for
the free particle V (x) = 0:

E =
p2

2m
. (3.33)

How can (3.33) be linked with (3.31)?

Let us look closer on how energy and impuls operators (3.9) and (3.15) act on the plane wave (3.32):

P̂ ξ(x, t) = −i~ ∂

∂ x
eiα(kx−ωt) = ~k ξ(x, t)

Êξ(x, t) = i~
∂

∂ t
eiα(kx−ωt) = ~ω ξ(x, t) (3.34)

it looks encouraging similar to (3.31) and motivates the ’first quantization’ procedure: ’take the energy-
impulse relationship of classic mechanics (something like (3.33)) and replace energy and impulse with the
operators’.

This procedure is called sometimes Correspondence Principle: an observable, which can be classically
expressed as a function of impuls and coordinates, should be replaced by a quantum mechaniacl operator
built by substututing the impuls by the impuls operator (3.9) and substituting the coordinates trivially
by corresponding operator. The only complication arise from the fact that opeators like P̂ x̂ are not
Hermetian. To solve this the Correspondence Principle prescribes to repalce them by hermetian (px +
xp)/2.

Historically the energy as function of coordinates and impulse and energy operator are called Hamiltonian
and symbols H or Ĥ are used respectively.
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Composed systems.

Consider two systems. One described by the vectors from the vector space X and another described by
the vectors from the vector space Y . Now consider the composed system, which consists of both. What
could be the vector space Z of the possible states of the composed system?

The first idea would be take cartesian product (also called the direct sum) of both vector spaces: Z =
X × Y . This vector space consists of all pairs (x, y) with x ∈ X and y ∈ Y . The basis of it is just a union
of the basis of X and the basis of Y and the dimention is the sum of dimentions of the both subspaces.
Pairs (x, y) describe the states of both subsystems just by listing the state of the first system and the state
of the second system one after another. This looks like description of two independent (not interactning)
systems which one decided to describe together. However, the interaction between the subsystems can
result in completely new states of the composed system, which are not just a combination of independent
states for X and Y . This would requrie a vector space Z bigger then X × Y .

Now, the quantum mechanics is a liniar theory: the superposition of state vectors is linear, the operators
for observables are linear, the time evolution equation is linear. Any operator, which acts linearly on the
state vectors of each subsystem (such operator is called bilinear) should also act linearly on the state of
combined system. In other words, any biliear map b defined on X × Y should correspond to some linear
map b′ defined on Z. This also implies some biliniar map a between X × Y and Z, so that the following
diagram commutes:

X × Y Z

T

a

b b′

The word ’commutes’ mean b′(a(x, y)) = b(x, y) for all pairs (x, y) ∈ X × Y . In algebra the vector space
Z satisfying (uniquely) these requriements is called tensor product X ⊗ Y . One can prove that the basis
of X⊗Y consists of all pairs (xi , yj) of the basis vectors xi and yj of X and Y respectivelly. We conclude
that the state space of the composed system is the tensor product of the state spaces of its subsystems.

4.1 Entanglement.

Note that the tensor product introduced in the previous section is potentially much bigger space then
X × Y . In particular the dimention of the tensor product space is a product of dimensions of its factors.
One can define an injection

X × Y → X ⊗ Y

(x, y) 7→ x⊗ y

13
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For example the tensor product of v = x1 − 2x2 ∈ X and w = y1 + y2 ∈ Y would be v ⊗ w = x1 ⊗ y1 −
2x2 ⊗ y1 + x1 ⊗ y2 − 2x2 ⊗ y2, but one can easily construct a vector in X ⊗ Y which cannot be written as
product of a vector from X and a vector from Y : for example x1⊗y1+x2⊗y2. Such states, which cannot
be written as a product, are called entangled. Many phenomena in quantum informatics are related to
entanglement.

Consider a quantum system which has only two states. Such systems are called quantum bits or qbits.
The state of N of such qbits is described by a vector in the tensor product of N copies of the 2-dimensional

C-vector space. In other words the state is an element in C2N - the 2N -dimensional C-vector space.
Compare this with the classical situation: the state of N classical bits is an element of a set of just 2N

elements in total.

The existance of entangeled states for composed system, which can not be written a tensor product of
states of subcomonents leads the an interesting observation: assume the system is in the entangeled state
x1⊗y1+x2⊗y2 and assume furthe that someone performs measuremnt on the first system and founds the
value corresponding to the basis eigenvector x1. In this case, assuming the projective measurement, the
wave function of the composed system collapses to x1⊗ y1 and the measurement on the second subsystem
will certainly produce value corresponding to the eigenvector y1. Assume firther that the subsystems are
already far away from each other (we leave for now by side an insteresing question why and how this is
possible). In this case the masurement performed on the first subsystem instantly has produced chnage in
probability of measurement results of the distant second subsystem. In physics these considerations are
known as paradox of Einstein, Podolsky and Rosen (EPR) and were used by authors in 1935 to show that
quantum mechanics eventually contradict the idea of finite maximal speed of information transmission.
We will revisit this once we have quantitative definition of information but let us now evaluate few simple
cases.

First of all, assume that both observers, one posessing the first subsystem and another posessing the
second one, did not agree any communication protocol in advance. The only common knowladge they
have is the knowladge about the state of the composed system

|Φ〉 =
∑

i,j

αij |xi〉 ⊗ |yj〉 . (4.1)

As the quantum theory alles only statistical predictions, we may give to our observers many identical
copies of the system, all in the same state, so allow them to make as many measures as they need to
calculate the probability of different results they get. Would it be possible for the second observer to
figure out which results the first observer gets and whether he perfoermed any observation at all?

Lets assume that the first observer will perform a measurement and get the value corresponding to |xn〉.
The probability of this is Pn∗ =

∑

j |αnj |2 and the normalized state after the firs measurement is

|Φn〉 =
1

√

∑

j |αnj |2
|xn〉 ⊗

∑

j

αnj |yj〉 . (4.2)

The probability for the second observer to measure the value corrspondnig to |ym〉 under these circum-
stances is

Pnm =
|αnm|2

∑

j |αnj |2
. (4.3)

And the total probability to observe the value corrspondnig to |ym〉 is given by the weighted sum
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P∗m =
∑

n

Pnm Pn∗ =
∑

n

|αnm|2
∑

j |αnj |2
∑

j

|αnj |2 =
∑

n

|αnm|2 . (4.4)

Note that the same probability would be in case the first observer not even try to perform his measurement.

So, without protocol agreed in advance, it seems to be not very informative for the second observer to
perform his measures and to count probabilities of different outcomes: he cannot say anything about the
measrement done by the first observer. May be the first observer can change this by performing some
different measurement? The most general attempt would be to measure arbitrary observable with the
orthonormal eigenvectors

|Ψ(r)〉 =
∑

i

β
(r)
i |xi〉 (4.5)

with

∑

i

β
(r)
i βs

i = δrs . (4.6)

Let’s rewrite the initial state Φ in this new basis:

|Φ〉 =
∑

r

|Ψ(r)〉(
∑

j

γrj|yj〉) , (4.7)

where coefficients γ can be found by comparing (4.7) with α in (4.1):

|Φ〉 =
∑

i,j

αij |xi〉 ⊗ |yj〉 =
∑

i,j

(
∑

r

β
(r)
i γrj)|xi〉 ⊗ |yj〉 (4.8)

and thus

αij =
∑

r

β
(r)
i γrj . (4.9)

This system of linear equations can be solved using the orthonormality of Ψ(r) vectors (4.6) by multiplying
on both sides by βs

i and summing ober i:

∑

i

βs
i αij =

∑

r

γrj
∑

i

β(r)
y βs

i = γsj . (4.10)

Thus the initial state Φ can be rewritten as

|Φ〉 =
∑

r

|Ψ(r)〉 ⊗
∑

j

(
∑

i

β
(r)
i αij)|yj〉 (4.11)
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and the probability for the first obeserver ot observe the value corresponding to |Ψ(r)〉 is

Pr∗ =
∑

j

|
∑

i

β
(r)
i αij |2 . (4.12)

According to projection rule, the state of the copmosed system after the first measurement will be

|Φ(r)〉 = 1√
Ω(r)

|Ψ(r) ⊗
∑

j

(
∑

i

β
(r)
i αij)|yj〉 , (4.13)

where Ω is a normalization factor

Ω(r) =
∑

j

|
∑

i

β
(r)
i αij |2 = Pr∗ . (4.14)

Under these circumstances, the probability Prm that the second observer will measure the value corre-
sponding to |ym〉.

Prm =
|∑i β

(r)
i αij |2√
Ω(r)

. (4.15)

And the total probability to observe the value corrspondnig to |ym〉 is given again by the weighted sum

P∗m =
∑

r

Prm Pr∗ =
∑

r

|∑i β
(r)
i αij |2√
Ω(r)

∑

j

|
∑

i

β
(r)
i αij |2 =

∑

r

|
∑

i

β
(r)
i αij |2 =

∑

r

|αrm|2 , (4.16)

where we used (4.6) on the last step.

Note that again this probability is the same as it would be if the first observer would perform any other
measurement or not measure at all. What can the first observer do to affect the results of the seond
observer?

It could let his part of the system evolve according to Schroedinger equation with some unitary operator
Û . The state (4.11) then would be

|Φ〉 =
∑

r

Û |Ψ(r)〉 ⊗
∑

j

(
∑

i

β
(r)
i αij)|yj〉 , (4.17)

but this just redefine the vectors Ψ(r) leaving them orthonormal with 〈Ψ(r)|Û∗Û |Ψ(r)〉 and, thus, does not
change the situation.

The described situtaion is sometimes refered as no-communication theorem. Note that quantum
mechanics, which would allow non-linear evolution, could violate this theorem. Also interpretation of the
state vector other then as a simple vehicle for calculation of the probabilities for observed values, could
break the agruments stated above: the state vector of the composed system is cleary changed by the
measurement performed by the remote observer, but, as long we use the state vector for calculation of
probabilities only, the resul of this calculation is not affected by the remote measurement.

However, as discussed above, one can compose entangled state which would allow the second observer to
know the outcome of the experiment made by the first observer instantly by performing a measurement on
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his part of the system. Knowing, that the first observer already finished his measurement on the composed
system, which was initially prepared in the state (x1 ⊗ y1 + x2 ⊗ y2)/

√
2, the second observer will with

certainity know the result of the first experiment: for example, if performing his own measurement the
second observer will get the value corresponding to |y1〉 he will know that the first obeserver got the value
corresponding to |x1〉, because otherwise the state of the composed system after the first measurement
would be x2 ⊗ y2 leaving no chance to observe the value corresponding to |y1〉.

This looks promising: the second observer can make statements about results of the first observer with
delay less then the time the light would need to travel between both! Does this contradict the relativity
theory? We promised to revisit this, once we introduce a quantitative measure for information. Intriguing
is a superficial similarity between the described scenario and the following communication protocol: our
two observers agree to buy the newspaper in advance but to look at the title page first at midnight. In
this case the second observer would also immediatelly and with certainity know which title story the first
observer is reading. With some cheat he could event predict it in advance.

4.2 Open systems

Consider a system composed of two qubits and assume that some physical property A belongs to the first
qubit. It could be spin or impuls or position in space. In the vector space of the first qubit, considered
alone, we would have a hermetian operator Â for this observable A. Being an observable of the firstqubit,
the obeservable A is also an observable of the system composed of two qubits. Which operator correspods
to Â in the tensor product space of the two qubits? The answer is Â⊗ 1̂, where product operator acts on
the basis vectors as follows: Â⊗ B̂(ei ⊗ hj) = Â ei ⊗ B̂ hj.

Assume that the composed system is in the state |φ〉 and we want to calculate an expectation value of the
operator Â′ = Â ⊗ 1̂. We can use the density operator of the composed system to calculate it and hope
that the density operator in the product space would allow similar decomposition as Â′ or at least some
simplification, if we restrict the application to to the observables of the first qubit only.

Let the initial state of the composed system be

|φ〉 =
∑

i,j

aij |eihj〉 , (4.18)

where we write |ei ⊗ hj〉 as |eihj〉 for convenience. As a basis {ek} for the first qubit we choose the

orthonormal eigenvectors of the operator Â: Âek = λkek.

The density operator for the composed system is per definition

ρ̂ = |φ〉〈φ| =
∑

i,j,m,n

aija
∗
mn |eihj〉〈emhn| , (4.19)

and the expectation value for Â′ is
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〈A′〉 = Tr(ρ̂Â′) =
∑

k,l

〈ekhl|
∑

i,j,m,n

aija
∗
mn |eihj〉〈emhn|Â⊗ 1̂|ekhl〉

=
∑

k,l

〈ekhl|
∑

i,j

aij |eihj〉
∑

mn

a∗mn〈emhn|Â⊗ 1̂|ekhl〉

=
∑

k,l

akl|
∑

mn

a∗mn〈emhn|Â⊗ 1̂|ekhl〉

=
∑

kl

|akl|2λk , (4.20)

where we used Âek = λkek at the last step.

This can also be expressed in terms of the reduced density opertor ρ̂1 = Tr2(ρ̂) ≡
∑

im

[

∑

j aija
∗
mj

]

|ei〉〈em|,
where Tr2 means a partial trace (the sum over the index j) over vector space dimentions of the second
qubit only.

Here is the proof:

Tr(ρ̂1Â) =
∑

k

〈ek|ρ̂1Â|ek〉 =
∑

k

〈ek|
∑

im





∑

j

aija
∗
mj



 |ei〉〈em|Â|ek〉

=
∑

kl

|akl|2λk (4.21)

comparing (4.20) with (4.21) we conclude, that

〈A′〉 = Tr(ρ̂Â′) = Tr(ρ̂1Â) = 〈A〉 , (4.22)

where Â′ = Â⊗ 1̂.

This is a nice result. It allows us to use the density operator ρ̂1, defined in the vector space of the first
qubit only, instead of ρ̂, defined in the bigger vector space of the composed system, as long we are dealing
with the fist qubit only, even if both are entangled.

4.3 Isolation and interaction

Per definition, the state of a composed system is not entangeled, if it can be written as a tesor product of a
vector for the first component and a vector for the second component. Can the system, startng with such
non entangeled state |φ〉 ⊗ |ξ〉, evolve into an entangeled state without interaction between components?

The answer is no. Here is the argument.

Without an interation, the energy of the composed system should be a sum of the energies of its parts.
Writing the non-entangeled eigenvector of the hamiltonian of the composed system as |φ〉⊗ |ξ〉, one would
expect

Ĥ |φ〉 ⊗ |ξ〉 = (E1 + E2)|φ〉 ⊗ |ξ〉 , (4.23)

which can be easily achieved with the hamiltonian of the form Ĥ = Ĥ1 ⊗ 1̂+ 1̂⊗ Ĥ2, with
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Ĥ1|φ〉 = E1|φ〉 , (4.24)

Ĥ2|ξ〉 = E2|ξ〉 . (4.25)

Both parts of the hamiltonian obviously commutate [Ĥ1 ⊗ 1̂, 1̂⊗ Ĥ2] = 0. For commuting operatos Â and
B̂, an exponent of a sum is a product of exponents: eA+B = eA+eB and, thus, an initially non-entangeled
state |φ〉 ⊗ |ξ〉(0) evolves with the time as follows:

|φ〉 ⊗ |ξ〉(t) = e−
i t

~
[Ĥ1⊗1̂+1̂⊗Ĥ2]|φ〉 ⊗ |ξ〉(0)

= e−
i t

~
Ĥ1⊗1̂e−

i t

~
1̂⊗Ĥ2 |φ〉 ⊗ |ξ〉(0) = e−

i t

~
Ĥ1 |φ〉(0)⊗ e−

i t

~
Ĥ2 |ξ〉(0) , (4.26)

with the last expression clearly representing an non-entangeled state vector. Given that the Schrodinger
equation supports reverse of time, the opposite statement is also true: existing entangelment will not
dissapear without interaction between the entangeled subsystems.



Chapter 5

Application to informatics.

5.1 No clone.

5.2 Teleportation

5.3 Superdense coding

Consider one possible orthonormal basis of the state space of two qubits - the 4-diemntional C2⊗C2 vector
space:

|Φ+〉 =
1√
2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) = 1√

2
(|00〉 + |11〉) (5.1)

|Φ−〉 =
1√
2
(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉) = 1√

2
(|00〉 − |11〉)

|Ψ+〉 =
1√
2
(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉) = 1√

2
(|01〉 + |10〉)

|Ψ−〉 =
1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) = 1√

2
(|01〉 − |10〉)

.

These states are called Bell states.

Assume that Alyse possess the first and Bob the second qubit and the whole system is initially in one of
these basis sates, say in |Φ+〉. This state is entangeled and Alyse cannot remove entangelement by acting

on her qubit locally by means of non-interavting evolution operator Û(t) = e−
i t

~
[Ĥ1⊗1̂+1̂⊗Ĥ2]. But she can

tranform it to any other base vector she wants, assuming that Bob does not chnage state of his qubit.

It may be worth to explain, what do we mean by non-chaning state. Without interaction, the state of the

second qubit will evolve by operator e−
i t

~
Ĥ2 . If both vectors |0〉 and |1〉 are the eigenvectors of Ĥ2 with

the same eigenvalue E2, the evolution of both vectors yields the same common factor e−
i t

~
E2 , which does

not change probabilities of any measurement. We expect, that Bob choose the Hamiltonian Ĥ2 carefully
to satisfy this requirement. For exmaple, in case the vectors |0〉 and |1〉 are characterized by different
magnetic moments, Bob should not expose his qubit to an external magnetic field.

Now Alyse can prepare her qubit so, that the composed system evolves into any of the four Bell states (5.1).

For exmpale, by choosing an appropriate Ĥ1, she can can make e−
i t

~
Ĥ1⊗1̂ = Ẑ ⊗ 1̂ with Z01 = Z10 = 1

20
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and Z00 = Z11 = 0. This evolution would switch the vectors |0〉 and |1〉 of the first qubit and so transform
|Φ+〉 into |Ψ+〉.

In this way Alyse may associae four differnt messages with four different Bell states and thus code two
bits of information into system composed of two entangeled qubits. This is not surprising. But if Alyse
as next sends her qubit to Bob, who will now possess the complete composed system, she will put him
into position to perform an experiment and distigniugh the four orthogonal Bell vectors and the message
associated with them. Note that Alyse has sent two bits of information to Bob by transfering only one
qubit. This procedure is called superdense coding.

The prepartion of the entangeled initial state of two qubits is done in advance, before the act of commu-
nication and can be considered as a process of establishing a communication channel. Once the channel
is in place, Alyse is free to decide, which one message out of four she want to transfer to Bob. During the
communication process itself, only one qubit is transferred.

5.4 Deutsch Jozsa algorithm.

5.5 Furier transformation.

5.6 Phase estimation.

5.7 Factoring.



Chapter 6

Hardware.

6.1 Harmonic oscillator.

Hamiltonian of the harmonic oscillator has the following form:

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 . (6.1)

Instead of solving Schrodinger’s equation directly one can introduce operators

â =
1√

2~mω
(mωq̂ + ip̂)

â† =
1√

2~mω
(mωq̂ − ip̂) (6.2)

with commutator [â, â†] = 1. The Hamiltonian (6.1) can then be written as

Ĥ =
1

2
~ω(â†â+ ââ†) = ~ω

(

â†â+
1

2

)

. (6.3)

Consider operator N̂ = â†â. Assuming it has an eigenvector |Ψ〉, the corresponding eigenvalue λ must be
positive:

〈Ψ|N̂ |Ψ〉 = λ〈Ψ|Ψ〉 = 〈Ψ|â†â|Ψ〉 = 〈âΨ|âΨ〉 ≥ 0 . (6.4)

Operators â and â† create a new eigenvector of the operator N with the eigenvalue λ − 1 and λ + 1
correspondingly. One can introduce now the eigenvector |0〉 with the lowest possible eigenvalue λ0 and
using notation |n〉 for the eigenvector with the eigenvalue λ0 + n write

â|0〉 = 0 ,

â|n〉 =
√
n|n〉 ,

â†|n〉 =
√
n+ 1|n+ 1〉 ,

|n〉 =
(â†)n√
n!

|0〉 . (6.5)

22
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Thes factors
√
n and

√
n+ 1 result from the normalization requirement 〈n|n〉 = 1.

Energy spectrum of the oscillator is then given by

H |n〉 = ~ω(n+
1

2
)|n〉 . (6.6)

This is the famous Plank formula which he introduced 1900 as an assumption.

Forthe sake of completeness we note, that the solution of the Schrodinger’s equation (3.28) with hamelto-
nian (6.1) is given by so called Hermite polynomials, named after the French mathematician Charles
Hermite, of the hanonical form:

Hn(x) = (−1)nex
2 db

dxn
e−x2

. (6.7)

The eigenvectors of Hamiltonian are called sometimes ’stable’ because they evolve with time by phase
factor only. According to the Schroedinger equation the time evolution is given by the unitary operator

Û(t) = e−iĤ t/~:

|n(t)〉 = e−iĤ t/~|n〉 = e−inω t|n〉 , (6.8)

where we ignored a constant phase i~ω/2, which is the same for all n.

How one would implement qunatum computer with the oscillator? Let’s consider two qubits and CNOT
gate as trivial sample program. The first idea would be to code |00〉q as |0〉o, |01〉q as |1〉o, |10〉q as |2〉o
and |11〉q as |3〉o, where we use the subscript q to indicate a two-qubits state and the the subscript o to
indicate an oscillator state.

However, if we try to implement CNOT with time evaluation operator (6.8), we will find another choice
more convinient:

|00〉q → |0〉o ,
|01〉q → |1〉o ,
|10〉q → (|4〉o + |1〉o) /

√
2 ,

|11〉q → (|4〉o − |1〉o) /
√
2 . (6.9)

Now, for t = π/ω the |n〉o does not change for even n and switch the sign for odd under (6.8). In other
words, under Û(π/ω) the |01〉q and |00〉q are not changed but |10〉q evelves to |11〉q and vs. versa. This
is exactly what one would expect from CNOT gate.

Note that the coding table (6.9) does not scale well: for m qubits coded together one would need energy
of 2m × ~ω, which is a lot compared with m× ~ω in case, one would use the m qubits separatelly.
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